Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae.
نویسندگان
چکیده
The irreversible oxidation of cysteine residues can be prevented by protein S-thiolation, a process by which protein SH groups form mixed disulphides with low-molecular-mass thiols such as glutathione. We report here the target proteins which are modified in yeast cells in response to H(2)O(2). In particular, a range of glycolytic and related enzymes (Tdh3, Eno2, Adh1, Tpi1, Ald6 and Fba1), as well as translation factors (Tef2, Tef5, Nip1 and Rps5) are identified. The oxidative stress conditions used to induce S-thiolation are shown to inhibit GAPDH (glyceraldehyde-3-phosphate dehydrogenase), enolase and alcohol dehydrogenase activities, whereas they have no effect on aldolase, triose phosphate isomerase or aldehyde dehydrogenase activities. The inhibition of GAPDH, enolase and alcohol dehydrogenase is readily reversible once the oxidant is removed. In addition, we show that peroxide stress has little or no effect on glucose-6-phosphate dehydrogenase or 6-phosphogluconate dehydrogenase, the enzymes that catalyse NADPH production via the pentose phosphate pathway. Thus the inhibition of glycolytic flux is proposed to result in glucose equivalents entering the pentose phosphate pathway for the generation of NADPH. Radiolabelling is used to confirm that peroxide stress results in a rapid and reversible inhibition of protein synthesis. Furthermore, we show that glycolytic enzyme activities and protein synthesis are irreversibly inhibited in a mutant that lacks glutathione, and hence cannot modify proteins by S-thiolation. In summary, protein S-thiolation appears to serve an adaptive function during exposure to an oxidative stress by reprogramming metabolism and protecting protein synthesis against irreversible oxidation.
منابع مشابه
Effect of Processed Lemon Pulp With Saccharomyces Cerevisiae Yeast on Protein and Energy Metabolism in Raini Goats
The aim of present study is investigating effect of treated lemon pulp by Saccharomyces cerevisiae yeast on protein and energy metabolism in goats was fed with this product. In this experiment 8 goats from raini breed were used for 21 days period; 16 days for adaptation and 5 days for sampling, to investigate the effect of processing lemon pulp by Saccharomyces cerevisiae yeas...
متن کاملIsolation of indigenous Glutathione producing Saccharomyces cerevisiae strains
Background: Glutathione (GSH) is a non-protein thiol compound, which plays an important role in the response to oxidative stress and nutritional stress. The aim of this study was to isolate indigenous S. cerevisiae strains capable of effectively produce GSH. Methods: One hundred-twenty sweet frui...
متن کاملEffect of Processed Lemon Pulp With Saccharomyces Cerevisiae Yeast on Protein and Energy Metabolism in Raini Goats
The aim of present study is investigating effect of treated lemon pulp by Saccharomyces cerevisiae yeast on protein and energy metabolism in goats was fed with this product. In this experiment 8 goats from raini breed were used for 21 days period; 16 days for adaptation and 5 days for sampling, to investigate the effect of processing lemon pulp by Saccharomyces cerevisiae yeas...
متن کاملCharacterization of Yeast Protein Enzymatic Hydrolysis and Autolysis in Saccharomyces cerevisiae and Kluyveromyces marxianus
Protein recovery under sonication treatment and autolysis, also protein hydrolysis progress during enzymatic hydrolysis (using trypsin and chymotrypsin) and autolysis (using endogenous enzymes) were investigated in Saccharomyces cerevisiae and Kluyveromyces marxianus. Crude protein content of dried yeast cells were 53.22% and 45.6% for S.cerevisiae and K.marxianus, respectively. After 96 hrs of...
متن کاملIsolation and Identification of Yeast Strains Capable of Producing Single Cell Protein from Whey in Co-Cultures with Saccharomyces cerevisiae
In this study, twenty-five whey samples collected from dairy industries in the city of Isfahan. The sampleswere cultured on malt extract broth (MEB) and yeast extract glucose chloramphenicol agar (YGCA) media.Eleven yeast strains (designated M1 to M11) were isolated from the culture. The strains were identified bytheir morphological and physiological properties. Betagalactosid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 374 Pt 2 شماره
صفحات -
تاریخ انتشار 2003